By mapping the specific steps that cells of melanoma, breast cancer and a blood cancer called myelofibrosis use to become resistant to drugs, the researchers now have much better targets for blocking those pathways and keeping current therapies effective. The findings are published in two papers in the journal Science Signaling.
"Clinical resistance to anticancer therapies is a major problem," said lead author Kris Wood, Ph.D., assistant professor of Pharmacology and Cancer Biology at Duke. "The most logical way to solve the problem is to understand why tumor cells become resistant to drugs, and develop strategies to thwart these processes."
"In our studies, we developed a screening technology that allows us to quickly identify the routes cells can use to become resistant, and using that information, we were able to show that these mechanisms seen in the laboratory are actually also occurring in patients' tumors," Wood said.