The Society of Cancer Management
  • Home
    • An After Life
    • News Archive
  • About
    • Terms & Conditions
    • Privacy Policy
    • Copyright Notice
  • Contact

. . . supporting research that improves cancer survival.

 
Please contact us if you would like to contribute a news item. We are keen to publish more articles from UK-based research and findings that relate to microbial infections during therapy.

Leukaemia treatment can be made more effective by using a drug for iron overload

24/12/2017

0 Comments

 
Picture
Healthy bone marrow (yellow) invaded by leukaemia, with blood vessels in cyan (red). CREDIT Delfim Duarte/Imperial College London
Chemotherapy for one type of leukaemia could be improved by giving patients a drug currently used to treat an unrelated condition, new research shows. Acute myeloid leukaemia (AML) is an aggressive cancer that stops healthy blood cell production. Chemotherapy is the standard treatment, but improvements are needed as the five-year survival rate in patients older than 60 is only 5-15 per cent.

Now, by studying how leukaemia cells infiltrate bone marrow, where blood cells are created, researchers led by a team from Imperial College London have made a crucial discovery. Studying mice and human samples, they found that certain areas in the bone marrow support blood stem cells, and when these are overtaken by leukaemia cells, these stem cells are lost and production of healthy blood is significantly reduced. This can cause anaemia, infection, and bleeding in patients, and affects the success of chemotherapy.

Crucially, the team also discovered that a drug already approved to treat a condition known as iron overload can protect these important bone marrow areas and allow blood stem cells to survive. Their results are published today in the journal Cell Stem Cell. The study's lead author, Dr Cristina Lo Celso from the Department of Life Sciences at Imperial, said: "Since the drug is already approved for human use for a different condition, we already know that it is safe. "We still need to test it in the context of leukaemia and chemotherapy, but because it is already in use we can progress to clinical trials much quicker than we could with a brand new drug."
The researchers are now hoping to team up with clinicians to begin human trials of the drug for AML. Understanding whether this drug is a viable option should take less than five years, as opposed to the 10-15 needed if an entirely new drug is developed. The team conducted the study by filming the invasion of leukaemia cells into bone marrow in mice. This approach allowed them see both large overviews and incredible details of the bone marrow, revealing phenomena happening deep inside the bone marrow - a view usually inaccessible to direct observation in patients.

The group discovered that one of the spaces hit particularly hard by leukaemia were special regions of blood vessels where blood stem cells reside. These are the basic blood cells that can become all other types of blood cells, including red and white, generating billions of new cells every day of our life.
For this reason, these special blood vessel regions are vital for producing new healthy blood, and their destruction by leukaemia allows the disease to progress. The loss of these vessels was confirmed in humans by studying patient tissue samples.

To see if they could protect the vessels, the team tested a drug called deferoxamine. The drug is used to treat iron overload, which can happen for example when a person receives multiple blood transfusions.
Deferoxamine has also been used in the treatment of myelodysplasia, a disease related to leukaemia where young blood stem cells do not mature into healthy blood cells. Other researchers who contributed to this project, and are now based at Imperial, Max Plank Munster, and Oxford Kennedy Institute, showed that this drug increases bone marrow vessels in aged mice.

Dr Lo Celso's group now found that the drug had a protective effect on the blood vessels in AML, allowing the rescue of healthy blood stem cells. Moreover, the enhanced vessels improved the efficiency of chemotherapy. Delfim Duarte, a physician and PhD student who performed most of the experiments published today, said: "Our work suggests that therapies targeting these blood vessels may improve existing therapeutic regimes for AML, and perhaps other leukaemias too."

Duarte et al. Inhibition of Endosteal Vascular Niche Remodeling Rescues Hematopoietic Stem Cell Loss in AML. 2017. https://doi.org/10.1016/j.stem.2017.11.006 [Article]
0 Comments

Your comment will be posted after it is approved.


Leave a Reply.

    Cancer Therapy & Palliative Care News

    This feed features recent developments in cancer therapy and palliative care. Views in these articles do not necessarily represent those of the Cancer Management Society.

    Archives

    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016
    July 2016
    June 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    December 2015
    November 2015
    October 2015
    September 2015
    August 2015
    July 2015
    June 2015
    May 2015
    April 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    September 2014
    August 2014
    July 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    December 2013
    November 2013

    Categories

    All
    General
    Presentation
    Research
    Review

    RSS Feed

Home

About

Contact Us

Terms & Conditions

Privacy Policy

Copyright Notice

RSS Feed

Proudly powered by Weebly
© The Society of Cancer Management 2017