The Society of Cancer Management
  • Home
    • An After Life
    • News Archive
  • About
    • Terms & Conditions
    • Privacy Policy
    • Copyright Notice
  • Contact

. . . supporting research that improves cancer survival.

 
Please contact us if you would like to contribute a news item. We are keen to publish more articles from UK-based research and findings that relate to microbial infections during therapy.

Using a genetic signature to overcome chemotherapy-resistant lung cancer

25/5/2017

0 Comments

 
Patients with non-small cell lung cancer (NSCLC) often respond to standard chemotherapy, only to develop drug resistance later, and with fatal consequences. But what if doctors could identify those at greatest risk of relapse and provide a therapy to overcome or avoid it?

Researchers at UT Southwestern Medical Center believe they have an answer: a 35-gene signature that identifies tumor cells most likely to develop resistance to treatment. The study, published today in Cell Reports, points to a new pharmacologic approach to target chemo-resistant lung cancer and even prevent development of such resistance in the first place.

"Cancer relapse after chemotherapy poses a major obstacle to treating lung cancer, and resistance to chemotherapy is a big cause of that treatment failure," said study co-author Dr. John Minna, a Professor and Director of in the Hamon Center for Therapeutic Oncology Research at UT Southwestern. "These findings provide new insights into why resistance develops and how to overcome it."

Dr. Minna, with additional appointments in Pharmacology and Internal Medicine, also holds the Sarah M. and Charles E. Seay Distinguished Chair in Cancer Research and the Max L. Thomas Distinguished Chair in Molecular Pulmonary Oncology. Investigators studied mouse and cellular models of NSCLC, a type of lung cancer that the American Cancer Society estimates accounts for 85 percent of all lung cancer cases in the United States.

"Previous studies have shown that up to 70 percent of those cancers develop resistance to standard therapy, such as the platinum-taxane two-drug combo that is often given," said study senior author Dr. Elisabeth D. Martinez, Assistant Professor of Pharmacology and in the Hamon Center. Both she and Dr. Minna are also members of UTSW's Harold C. Simmons Comprehensive Cancer Center.
Using long-term on/off drug cycles, lead author and former postdoctoral researcher Dr. Maithili Dalvi developed a series of cellular models of progressive tumor resistance to standard chemotherapy that ranged from very sensitive to highly insensitive. Next, the researchers identified genes commonly altered during the development of resistance across multiple cell line and mouse models and identified a 35-gene signature that indicated a higher genetic likelihood of chemotherapy resistance.

"It's like a fingerprint for resistance," Dr. Martinez said, adding that it was predictive in both cells and mouse models.

Next they compared this resistance biomarker using genetic profiles from human tumors in their National Cancer Institute (NCI) lung cancer Specialized Programs of Research Excellence (SPORE) database at UT MD Anderson Cancer Center in Houston. The database contained information on patient outcomes and those who had been treated with the two-drug chemotherapy. The genetic fingerprint for resistance correlated with cancer relapse in NSCLC patients in the database, she said.

Researchers discovered that as cancer cells developed greater resistance to chemotherapy, they progressively made higher amounts of enzymes called JumonjiC lysine demethylases. Dr. Martinez said these enzymes facilitate resistance by changing the expression of - or turning on and off - genes.
"Cancer cells use these enzymes to change, or reprogram, gene expression in order to survive the toxic stress of the chemotherapy. By changing the expression of genes, the tumor cells can adapt and survive the toxins," she said.

Investigators then tested two potential drugs, both JumonjiC inhibitors. One of them, JIB-04, was found by UT Southwestern researchers in the Martinez lab during a small-molecule screen conducted at the National Center for Advancing Translational Sciences' Chemical Genomics Center in Bethesda, Maryland.

"I believe this is the first report of NSCLC tumors taking advantage of multiple JumonjiC enzymes to reprogram gene expression in order to survive chemotoxic stress. In addition, and this is the most fascinating part: Dr. Dalvi found that greater chemotherapy resistance defines a new susceptibility to the JumonjiC inhibitors," she said. "The cancer cells develop a new Achilles' heel that we can hit."

Because the chemo-resistant cancer cells are dependent on JumonjiC enzymes for survival, inhibiting those enzymes returns cancer cells to mortality and vulnerability to cell death, she explained.
"We think these JumonjiC inhibitors have the potential to be used either to treat tumors once they become resistant to standard therapies, or to prevent resistance altogether," she said. "In our experiments these inhibitors appear to be much more potent in killing cancer cells than normal cells."

Later, researchers tested whether the Jumonji inhibitors JIB-04 or GSK-J4 prevented chemotherapy resistance. This strategy succeeded in cell cultures and partially prevented resistance in animal models, Dr. Martinez said.

Dalvi et al. Taxane-Platin-Resistant Lung Cancers Co-develop Hypersensitivity to JumonjiC Demethylase Inhibitors.Cell Reports, 2017;19:1669–1684 [Article]
0 Comments

Your comment will be posted after it is approved.


Leave a Reply.

    Cancer Therapy & Palliative Care News

    This feed features recent developments in cancer therapy and palliative care. Views in these articles do not necessarily represent those of the Cancer Management Society.

    Archives

    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016
    July 2016
    June 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    December 2015
    November 2015
    October 2015
    September 2015
    August 2015
    July 2015
    June 2015
    May 2015
    April 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    September 2014
    August 2014
    July 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    December 2013
    November 2013

    Categories

    All
    General
    Presentation
    Research
    Review

    RSS Feed

Home

About

Contact Us

Terms & Conditions

Privacy Policy

Copyright Notice

RSS Feed

Proudly powered by Weebly
© The Society of Cancer Management 2017